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LElTER TO THE EDITOR 

Hierarchical spectra in systems with incommensurate potentials 

G Wahlstrom and K A Chao 
Department of Physics and Measurement Technology, University of Linkoping, S-58183 
Linkoping, Sweden 

Received 9 November 1987 

Abstract. The energy spectrum of a potential consisting of an array of barriers is obtained 
by solving the Schrodinger equation. The barriers have the same height and constant 
separation, but their widths are incommensurately modulated. The hierarchical band 
splittings obey the same rules which were derived earlier for the tight-binding Aubry model. 
We have also demonstrated their equivalence to Hofstadter's rules which were derived by 
Stinchcombe and Bell recently. 

The spectral properties of systems with incommensurate potentials have been exten- 
sively studied by many authors [l-171 using the one-dimensional Harper equation [18] 
or the equivalent Aubry model [ 191: 

Ix 

H ( Q )  = [ E ( Q ,  n)a' ,an +t(a ' ,+,an + ~ t , - l a n ) I  (1) 
n = - x  

where E (0, n) = V cos( Q 2 m )  and Q is an irrational number. In more general form, 
the site energy E ( Q ,  n )  contains a phase 4 and has the form E ( Q ,  n )  = 
V c o s ( Q 2 m + 4 ) .  However, Sinai [20] has shown that, except for the possible 
introduction of some special states in the gaps, 4 does not change the spectrum of 
H ( Q ) .  One explicit example is the existence of the zero-eigenenergy state if 4 = *7r/2 
[21]. Therefore, almost all existing works on the Aubry model ignored the phase 4. 

The spectrum of (1) is characterised by the hierarchical band splittings which had 
previously been suggested [22] to arise from the continued fraction representation of 
Q. Yet the correct rules of hierarchical band splittings were established later by 
Hofstadter [23] through his extensive numerical calculations to identify two principal 
gaps which split each existing band into one centre subband and two outer subbands. 
Recently, Stinchcombe and Bell [ 171 have derived these rules with a degenerate 
perturbation method. 

Although the model Hamiltonian (1) has its intrinsic theoretical interest and 
importance, in order to compare theoretical predictions with experimental data, one 
must consider a three-dimensional model with the incommensurate modulation of 
potential along one crystal axis. Recent calculation of the optical transmission 
coefficient based on such a three-dimensional model reproduced very well the measured 
spectrum of Rb,ZnBr, [24]. Another class of materials in which modulation of potential 
along one crystal axis can be realised is semiconductor superlattices [25]. But for 
semiconductor superlattices, the tight-binding Hamiltonian [26] cannot describe 
properly the electronic properties. Instead, we should solve the Schrodinger equation 
with a modulated potential. Some early work along this line used an extremely 
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simplified potential consisting of delta-function barriers with their positions and/or 
strengths modulated incommensurately [27-301. Based on the free-electron model 
there have been theoretical investigations on the plasma excitations in semiconductor 
superlattices [31,32] and the result suggested its possible experimental confirmation 
by Raman scattering. 

In this letter we study the spectrum of the Schrodinger equation 

The potential consists of an array of barriers and can be expressed as 

V(x) = 
for x, S x S x, + d 
for x, + d s x s x ,  + d  + b + A  cos(Q2rrn) = x,+, (3) 

where n is an integer between -CC and CO. All barriers have the same height and the 
separation between two adjacent barriers is a constant d. However, the widths of 
barriers are incommensurately modulated by A cos( Q2rrn) over a constant width b. 
One limiting case of V(x) is an array of delta-function barriers with constant separation 
but with strength modulated according to A cos(Q2rrn). It is shown [28] that this 
limiting case can be mapped onto the Aubry model Hamiltonian ( l ) ,  except that the 
amplitude V is now energy dependent. Consequently, as the modulation strength A 
increases, the eigenfunctions of the corresponding Schrodinger equation do not exhibit 
an energy-independent transition from all extended states to all localised states [30]. 
Such an energy-independent transition localised to an extended transition is characteris- 
tic of the tight-binding Aubry Hamiltonian [33]. 

On the other hand, the symmetry properties of the tight-binding Hamiltonian (1) 
are the same as the symmetry properties of the potential (3) .  Therefore, the hierarchical 
band splittings of the Aubry Hamiltonian (1)  should be identical to the hierarchical 
band splittings of the Schrodinger equation ( 2 ) .  This is indeed the conclusion of our 
numerical calculation. Before presenting our numerical result, let us first briefly outline 
the rule of band splittings, which is determined entirely by the symmetry of the 
Hamiltonian H ( Q )  of (1) [16]. 

The irrational number Q can be expressed as a continued fraction 

1 
0 = [P I  2 P2 I P.3 7 . . . I  = 

1 

1 
P2+--- 

P3+. . . 

kl+ (4) 

where F ,  are positive integers. To make the outline simple and clear, we consider a 
specid class of quadratic irrational numbers { Q ( p ) ;  p = 1, 2, . . . } defined as 

For this class of Q, the site energy of (1) can be written as 

If Q is a rational number U /  N (for fractional p ) ,  we have E (  Q, n 1 = V cos(2rrvnlN) 
and the initial spectrum of H ( Q )  splits into N subbands. Let N, be the total number 
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of eigenstates in the initial spectrum. Then the number of eigenstates in each subband 
is simply N,/ N. I f  Q is a quadratic irrational number, the rules of hierarchical band 
splittings [ 161 are as follows. 

(i) For even p, the initial spectrum splits into p equivalent subbands and one 
non-equivalent subband. The non-equivalent subband lies at the centre and contains 
Q’N, eigenstates. In each of the remaining p equivalent subbands the number of 
eigenstates is ON,. Every subband then continues to split in the same fashion as the 
initial spectrum. 

(ii) For odd p and p ~ 3 ,  the initial spectrum splits into p equivalent subbands 
and one non-equivalent subband, just as the previous case of even p. However, one 
equivalent subband overlaps with the centre non-equivalent subband and the total 
number of eigenstates in these two overlapped subbands is QN,+ Q’N,. The splitting 
of the overlapped subbands produces one centre subband containing Q’N, eigenstates 
and p + 1 outer subbands, each of which has Q’N, eigenstates. Now all subbands are 
separated from each other, and every one of them continues to split in the same fashion 
as the initial spectrum. 

(iii) For p = 1 ,  the initial spectrum can be considered as the two centre overlapped 
subbands in the previous case (ii). The first split produces one centre non-equivalent 
subband and two outer equivalent subbands. This pattern of splitting repeats itself 
when the centre non-equivalent subband splits again. However, each outer equivalent 
subband continues to split into p + l  = 2  subbands. The ratio of the numbers of 
eigenstates in these two subbands is 1 to Q. 

It can be shown that the above rules yield the same hierarchical band splittings as 
those obtained from Hofstadter’s rules [ 231 which were derived recently by Stinchcombe 
and Bell [ 171. However, in this letter we will only demonstrate their equivalence when 
we discuss our numerical results. 

Now we will calculate the spectrum of the Schrodinger equation (2) .  In  any region 
S x < & where the potential V(x) is constant (either V(x) = 0 or V(x) = U ) ,  the 

(7)  

where k = {2m[E - V(X)]}”~/  h. Since +(x)  = a n d  +’(x) = d@(x) /dx  are continuous 
everywhere, we readily obtain 

eigenfunction is simply 

+(x)  = A exp(ikx) + B exp(-ikx) 

(8) 

Using this recursion relation, the eigensolutions of the Schrodinger equation (2) can 
be derived by counting the nodes of +(x)  throughout the system [34]. 

We have used a system of l o 5  barriers in our numerical calculation. The separation 
d between two adjacent barriers is our unit of length and the unit of energy is 
(1 /2m)(  h / d ) * .  To detect the hierarchical band splittings, it is sufficient to consider 
an initial spectrum (the spectrum of a periodic potential without incommensurate 
modulation, A = 0) consisting of only one single band. This single-band initial spectrum 
can be achived if we set the barrier height U = 6 and the barrier width b = 1. These 
parameter values are chosen for the convenience of numerical calculation without 
qualitative influence on the pattern of hierarchical band splittings. 

For given values of the irrational number Q and the modulation amplitude A, we 
have derived the spectrum for the potential (3). We have used many different values 

cos k(5,-51) ( l / k ) s i n  k(5*-51) +,(,$I) 

(i‘(?)))=(-ksin k(52-51)  cos k ( 5 2 - 5 1 )  
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, 

1 

of Q and A and all results confirm the above-mentioned rules of hierarchical band 
splittings. One example of our calculation is shown in figure 1 for A = 0 . 8  and 
Q = (a- 1)/2 (the golden mean). This value of Q is simply the quadratic irrational 
number Q = 1 / ( p  + Q )  with p = 1. The three columns 1, 2 and 3 on the left of figure 
1 represent three stages of bond splittings. Each vertical bar indicates a subband with 
band edges marked by the two numbers at the ends. At each stage of band splittings, 
the numbers (either 1 or Q) at the left side of the vertical bars are the relative numbers 
of eigenstates in these subbands. The actual numbers of eigenstates in the three 
subbands at the first stage of band splittings are Q2Nt, Q'N, and Q2Nl, where N,  is 
the total number of eigenstates in the initial spectrum. The pattern of hierarchical 
band splittings in figure 1 clearly follows the above-stated rules. 

Let us modify the assignment of subbands when the two outer bands of stage 1 
continue to split. From stage 2 to stage 3, we ignore the splittings of the two subbands, 
each of which contains relatively Q eigenstates. Then, the hierarchical band splittings 
are shown on the right of figure 1. This modified pattern follows the Hofstadter's rules 
[23] which have been derived recently by Stinchcombe and Bell [17]. 

We would like to point out that the spectrum in figure 1 is not symmetric at any 
stage of band splitting. In the original derivation [ 161 of the rules of hierarchical band 
splittings, the electron-hole symmetry of the tight-binding Hamiltonian (1) was con- 
sidered in order to determine if there is overlap between the non-equivalent subband 
and one of the equivalent subbands. For the potential V ( x )  given by (3) ,  our numerical 
results indicate that, even for very large values of the modulation amplitude A, the 

10 

Q O  
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: I  
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Figure 1. Hierarchical band splittings for Q = (a- 1)/2 (corresponding to cc = 1)  and the 
modulation amplitude A = 0.8. Each vertical bar represents a band with band edges marked 
by numbers at the ends. After each band splitting, the relative numbers of eigenstates in 
subbands (either 1 or Q )  are indicated at the left of the bars. 
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condition of overlap of subbands which was derived for the Aubry Hamiltonian [ 161 
is still valid for the present problem. 

Finally, we must emphasise that one should not make theoretical predictions of 
novel properties of modulated semiconductor superlattices which result only from the 
structure of hierarchical band splittings. Because these materials are three dimensional, 
the hierarchical band splittings along one particular direction in the reciprocal space 
will be hidden under the overall three-dimensional band structure. In this respect, a 
more general theoretical model is required [24]. 

This work was supported by the Swedish Natural Science Research Council under 
grant no NFR-FFU-3996-140. 
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